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Isosteric A/,A/'-bis(alkyldimethyl)-3-X-1,5-pentanediammonium dibromides (PDDBr) (alkyl = n-
hexyl-n-octadecyl) with X = CH2, NCH3, О or S inhibit photosynthetic processes in Chlorella vulgaris 
algae and in spinach chloroplasts. The dependence of the inhibitory activity against photosynthesiz-
ing organisms on the critical micelle concentration as well as on the number of carbon atoms in the 
alkyl substituents of PDDBr shows a nonlinear parabolic course. From two theoretical models (para­
bolic and bilinear) used for the description of correlations between biological activity and the structure 
of PDDBr the bilinear model gave better parameters of statistical analysis. The isosteric exchange of 
X = CH2to NCH3, О or S practically did not affect the biological activity of PDDBr and the studied 
correlations could be expressed by a single regression equation for all 36 investigated compounds. 

Long-chain bis-quaternary ammonium salts with 
alkyls longer than octyl belong to membrane-active 
compounds showing several biological effects, e.g. 
herbicidal [1], antimicrobial [2—4], antibacterial [5] or 
fungicidal activity [6, 7], as well as ganglioblocking ef­
fects [8]. Recently it was found that compounds from 
the group of quaternary ammonium salts show algicid­
al effects as well and they inhibit photosynthetic pro­
cesses in plant chloroplasts causing the destruction of 
photosystem II with the subsequent release of Mn2+ 

ions from the manganese-protein complex [9]. 
The study of aggregation properties of isosteric 

/V^'-bisialkyldimethyO-a-X-I.S-pentanediammonium 
dibromides (PDDBr) with X = CH2, NCH3, О or S in 
aqueous solutions showed that critical micelle con­
centration (CMC) of these compounds does not re­
flect the small differences in lipophilicity of compounds 
with a very similar structure sensitively enough. From 
hydrophobicity indices, surface area per molecule and 
from the surface tension at CMC values o f PDDBr 
the following lipophilicity increase sequence was de­
termined: S, CH2, NCH3, О [10]. The comparison of 
antimicrobial activity of corresponding PDDBr com­
pounds with different X against Staphylococcus au­
reus, Escherichia coli, and Candida albicans has 
shown only very small differences, i.e. the isosteric 
exchange practically does not affect the antimicrobial 
activity [4]. 

This paper is aimed to investigate the algicidal ac­
tivity of PDDBr as well as their inhibitory effect on pho­
tochemical activity of spinach chloroplasts and to cor­

relate this biological effect with the structure and CMC 
of studied compounds using the parabolic model of 
Hansch [11] and Kubinyľs bilinear model [12]. 

The biological characteristics of PDDBr concerning 
photosynthesis inhibition in algae Chlorella vulgaris(\og 
{1/MIC}) and in plant chloroplasts (log {1/IC50}) and the 
CMC values of PDDBr are summarized in Table 1. It is 
evident that the intensity of the biological activity de­
pends on the length of the alkyl substituents (R) of the 
effector, with alkyl prolongation it increases reaching the 
maximum approximately at dodecyl derivatives. Quasi-
parabolic course of this dependence, the so-called "cut­
off' effect can be explained with the free volume theory 
[9]. From Table 1 it is evident that the isosteric exchange 
of one atom in the joining bridge causes only a very small 
difference in biological activity of PDDBr isosters with 
the same alkyl chain length, i.e. the molecule modifica­
tion does not affect the mode of action. Similar results 
were obtained by the study of antimicrobial activity of 
PDDBr isosters against Staphylococcus aureus, Es­
cherichia coli, and Candida albicans [4]. 

The regression coefficients of the regression equa­
tions for both applied theoretical models (parabolic and 
bilinear, respectively) as well as the corresponding pa­
rameters of the statistical evaluation are shown in Ta­
ble 2. 

In general it can be concluded that both applied 
models are suitable for the description of the studied 
correlations. The correlation indices r of the regres­
sion equations are in the range of 0.858—0.999, the 
values of F-test and Mest values of regression coeffi-
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Table 1. Biological Characteristics (log (1/(IC50/(mol dm-3))), 
log (1/(MIC/(mol dm-3)))) and Logarithms of Critical Mi­
celle Concentration (log (CMC/(mol dm-3))) of 
A/,A/-Bis(alkyldimethyl)-3-X-1,5-pentanediammonium 
Dibromides 

X /77 -log {CMC} logfl/IC^} log {1/MIC} 

IC50-— concentration of effector causing 50 % inhibition of the oxy­
gen evolution rate in spinach chloroplasts; MIC — minimum inhib­
itory concentration causing total inhibition of chlorophyll production 
in algae Chlorella vulgaris] m — number of carbon atoms in the 
alkyl substituents. 

cients Д B, and Cshow that the significance level cor­
responds to 99 % (with one exception of 95 %). It has 
been confirmed that the bilinear model is better for the 
description of the studied correlations. This is shown 
by higher rand F-values obtained with the bilinear mod­
el in comparison to the corresponding values obtained 

for the parabolic one, as well as by high positive val­
ues of partial F-test (pf) (in the range of 10.88—192.87) 
evaluated according to Kubinyi [12]. The calculated 
theoretical m or CMC values showed that the most ef­
fective inhibitors for all four investigated PDDBr iso-
ster series with X = CH2, NCH3, О or S are undecyl— 
tridecyl derivatives. The number of members in the set 
n = 7, 8 or 9 can be regarded as insufficient for the 
more-parameter equation, however the calculated sta­
tistical parameters (л, s, F) and the confidence inter­
vals of the regression coefficients show that the ob­
tained results are significant. 

With respect to relatively small differences in the 
inhibitory activity of compounds with different X, but 
with the same length of alkyl substituents, for the quan­
titative description of the photosynthesis-inhibiting ac­
tivity—structure relationship a single correlation equa­
tion can be used for all 36 studied derivatives as for 
algal, so for chloroplast systems (Table 2). Statistical 
parameters corresponding to these regression equa­
tions support the above-mentioned assertion concern­
ing the significance of the results obtained for individu­
al series of isosters with X = CH2, NCH3, О or S. 

EXPERIMENTAL 

Isosteric /V,/V'-bis(alkyldimethyl)-3-X-1,5-pentane-
diammonium dibromides [R(CH3)2N

+(CH2)2]2X 2ВГ 
(PDDBr) where the linear alkyl chain had 6—18 car­
bon atoms and X = CH2, NCH3, О or S were synthe­
sized according to [4]. CMC values of aqueous 
PDDBr solutions were determined by conductivity 
measurements [10]. 

The effect of PDDBr on chlorophyll production in 
stationary cultured algae Chlorella vulgaris (7 d, 16 h 
light/8 h dark) was investigated according to the meth­
od described in [13]. Their effect on the oxygen evolu­
tion rate in spinach chloroplasts was studied spectro-
photometrically in the presence of electron-acceptor 
2,6-dichlorophenol-indophenol [9]. The biological ac­
tivity of PDDBr concerning photosynthesis inhibition 
was expressed by the minimum inhibitory concentra­
tion (MIC) for algae and by IC50 values for chloroplast 
systems, i.e. by concentrations causing total or 50 % 
inhibition of the studied parameter. 

For the description of correlations between biolog­
ical activity (log {1/MIC} or log {1/IC50}) and critical mi­
celle concentration (CMC) or the number of carbon at­
oms (m) in the alkyl substituents of PDDBr two 
theoretical models have been used — the parabolic 
model of Hansch[11] and Kubinyľs bilinear model [12]. 
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Table 2. Regression Coefficients (А, В, С) for Parabolic (P) and Bilinear (B) Relationships between Structure and Inhibitory Activity of 
A/,/V'-Bis(alkyldimethyl)-3-X-1 ,5-pentanediammonium Dibromides in Photosynthesizing Organisms Spinach Chloroplasts (I) and 
Chlorella vulgaris (II) 

log {1/V} = Ax+Bx2+C [P] 
log {1/V} = A log х- В log (вх+ 1) + С [BJ 
log {1/V} = Ax- В log (в Ю*+ 1) + С [В.] 

x PO Eqn A B log/? Optimum m PF 
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(±1.281 x1010) 
-O.073 
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0.979 

0.466 
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0.397 

0.144 
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0.140 

0.282 

0.144 

0.214 
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8.37 

70.73 

16.01 

90.01 

85.42 

753.31 

314.89 

1255.26 

57.27 

258.87 

167.18 

364.11 

1.47 x Ю-4 

1.59 x 10"3 

13.18 
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7.79 x Ю-4 

13.65 
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2.05x10"1 
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32.34 

ß— nonlinear parameter of the bilinear equation; n— number of members in the set; r— correlation index; s — standard deviation; F— 
F-test value; V— MIC or IC^; optimum m (or CMC) — theoretical value of m (or CMC) corresponding to the highest activity; CMC and m 
are defined in Table 1. 
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