PRELIMINARY COMMUNICATION

Preparation of 2-C-Hydroxymethyl-D-mannose and -D-glucose and Their Stereospecific and Irreversible Rearrangements to D-gluco-and D-manno-Heptulose under the Conditions of the Bílik Reaction

L. PETRUŠ, Z. HRICOVÍNIOVÁ, M. PETRUŠOVÁ, and M. MATULOVÁ

Institute of Chemistry, Slovak Academy of Sciences, SK-842 38 Bratislava

Received 4 November 1996

Dedicated to Professor Stephen J. Angyal in honour of his 80th birthday

Molybdic acid-catalyzed epimerization of aldoses introduced twenty-five years ago [1] and now known as the Bílik reaction has become a universal method of preparation of formerly rare aldoses such as D-mannose [2], L-glucose [3], D-talose [4], L-ribose [5], D-and L-lyxose [5], etc. Attempts to utilize the reaction for epimerization of ketoses were not successful; only partial, general acid-catalyzed mutual isomerization of pentuloses [6] and hexuloses [7] was observed.

According to the mechanism of the Bílik reaction [8], the carbon skeleton of a starting aldose ...—⁴CHOH—³CHOH—²CHOH—¹CHO rearranges to that of epimeric aldose ...—⁽⁴⁾CHOH—⁽³⁾CHOH—⁽¹⁾CHOH—⁽²⁾CHO. The rearrangement has been used also for preparation of specifically labelled aldoses [9].

We now report on a new method of synthesis of D-manno- and D-gluco-heptulose, namely a molybdic acid-catalyzed carbon skeleton rearrangement of 2-C-hydroxymethyl-D-glucose and -D-mannose, respectively. The communication describes also preparation of the branched-chain aldoses by the Sowden method applied to D-fructose.

Addition of nitromethane to D-fructose (I, Scheme 1) in the presence of sodium methoxide followed by treatment of intermediate sodium 1-deoxy-2-C-hydroxymethylhexitol-1-nitronates II and III with sulfuric acid (Nef reaction) gave a mixture of 2-C-hydroxymethyl-D-mannose (IV) and -D-glucose (V) and the starting I. After removal of I by fermentation with baker's yeasts, 18 % of branched-chain aldoses IV and V in the ratio ca. 1:1 (by 13 C NMR spectroscopy) were obtained. Separation of the mixture on a column of Dowex 50W (Ba²⁺ form) afforded chromatographically pure IV (sirup, $[\alpha](D, 20^{\circ}C, \rho = 20^{\circ}C, \rho = 27^{\circ}C)$) and V (sirup, $[\alpha](D, 20^{\circ}C, \rho = 27^{\circ}C)$) and V (sirup, $[\alpha](D, 20^{\circ}C, \rho = 27^{\circ}C)$)

g dm $^{-3}$, water) = + 27.4°), both giving satisfactory elemental analyses.

The structures of both branched-chain aldoses IV and V were proved by NMR spectroscopy. The $^{13}\mathrm{C}$ chemical shifts of both anomeric carbon atoms of compound IV ($\delta=95.2$) were close to those of D-mannose ($\delta=95.0$ and 94.6 [10]). Similarly, the chemical shifts of both anomeric carbon atoms of V ($\delta=99.3$ and 93.0) were close to those of D-glucose ($\delta=96.7$ and 92.9 [10]). One-dimensional $^{13}\mathrm{C}$ DEPT and

 1 H NOESY spectra afforded additional support of the structures of IV and V, particularly the presence of quaternary carbon atoms and the stereochemistry at them, respectively.

Treatment of branched-chain aldose IV in 0.5 % molybdic acid at 80 °C for 3 h caused its complete transformation to D-gluco-heptulose (VI) and traces of D-manno-heptulose (VII). Heptulose VI was obtained after deionization of the reaction mixture with an anion exchange resin in the HCO_3^- form by crystallization in an 82 % yield.

Similar treatment of compound V resulted in the formation of a 4:1 mixture (by 13 C NMR spectroscopy) of D-manno-heptulose (VII) and D-gluco-heptulose (VI) not containing the starting material. Heptulose VII was obtained after column separation (Dowex 50W, Ba²⁺ form) in a 51 % yield. In a control experiment when heptulose VII was treated at more severe conditions (1 % molybdic acid, 95 °C, 5 h), a ca. 1:1 mixture of C-3 epimeric heptuloses VI and VII was obtained. Branched-chain aldoses IV and V were not detected in the mixture by means of 13 C NMR spectroscopy.

Examined physicochemical constants (m.p., $[\alpha](D)$) and ¹³C NMR spectra of heptuloses VI and VII were identical with those of the samples prepared by an independent procedure [11].

In conclusion, the observed irreversible transformation of branched-chain aldoses IV and V to respective heptuloses VI and VII catalyzed with molybdic acid is in accordance with the mechanism and thermodynamics of the Bílik reaction. The irreversibility of the

transformation is apparently a consequence of a substantially lower stability of 2-C-hydroxymethylaldoses in comparison with that of 2-ketoses; the branched-chain aldoses, although expected, were not formed by treatment of the 2-ketoses with molybdic acid. The transformation thus represents a new method of synthesis of ketoses. Further development of the method is in progress.

Acknowledgements. This work was supported by the Slovak Academy of Sciences, Grant No. 2/1234/96.

REFERENCES

- Bílik, V., Voelter, W., and Bayer, E., Angew. Chem. 83, 967 (1971).
- 2. Bilik, V., Chem. Zvesti 26, 183 (1972).
- 3. Bílik, V., Chem. Zvesti 26, 187 (1972).
- Bílik, V., Voelter, W., and Bayer, E., Liebigs Ann. Chem. 1974, 1162.
- 5. Bílik, V. and Čaplovič, J., Chem. Zvesti 27, 547 (1973).
- Stankovič, Ľ., Bílik, V., Fedoroňko, M., and Königstein, J., Chem. Zvesti 29, 685 (1975).
- 7. Bílik, V. and Tihlárik, K., Chem. Zvesti 28, 106 (1974).
- Hayes, M. L., Pennings, N. J., Serianni, A. S., and Barker, R., J. Am. Chem. Soc. 104, 6764 (1982).
- Barker, R. and Serianni, A. S., Acc. Chem. Res. 19, 307 (1986).
- Bock, K. and Pedersen, C., Adv. Carbohydr. Chem. Biochem. 41, 27 (1983).
- Petruš, L., Bílik, V., Anderle, D., and Janeček, F., Chem. Zvesti 33, 636 (1979).

Translated by L. Petruš