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Nitromethane synthesis with D-fructose followed with the Nef reaction of intermediate 1-deoxy-
2-C-hydroxymethylhexitol-l-nitronates afforded 2-CL(hydroxymethyl)-D-glucose and -D-mannose 
which were separated via their phenylhydrazones and by chromatography on a cation-exchange 
resin in the B a 2 + form. The treatment of individual branched-chain aldoses with catalytic amount 
of molybdic acid, i.e. under the conditions of the Bilik reaction afforded thermodynamic equilibrium 
mixtures of 2-č^(hydroxymethyl)-D-ghicose and D-manno-hept-2-ulose in the mole ratio 2 55 and 
of 2-CL(hydroxymethyl)-D-mannose and D-ýíitco-hept-2-ulose in the ratio 2 23, respectively. The 
same equilibria were obtained also from the side of hept-2-uloses. Due to easy availability of 2-
C-(hydroxymethyl)-D-mannose also from its di-O-isopropylidene derivative the interconversion was 
advantageously used for one-step synthesis of D-phzco-hept-2-ulose. 

Effective synthetic procedures for naturally rare 
carbohydrates have become very important in prepa­
ration of compounds that are used in biochemistry 
and medicinal chemistry. The development of methods 
where metalic ions play a catalytic role in transfor­
mations of saccharides can significantly simplify often 
complex synthetic procedures. For example, Bilik has 
shown in a series of reports that, in mildly acidic solu­
tions of molybdate, aldoses epimerize at carbon atom 
C-2 under the formation of thermodynamic equilib­
rium mixture of two epimers [1—3]. Later the trans­
formation has been generalized to all aldoses and be­
came known as the Bilik reaction [4]. 

There are two simple ways of approaching the syn­
thesis leading to preparation of 2-C-hydroxymethyl 
derivatives of aldohexoses. One involves their cis-
bidentate protection including C-2—OH group to 
obtain a suitable rigid structure of the C-2 nucle-
ophile for its addition to formaldehyde [5]. The sec­
ond, and more generally applicable one, is via ni­
tromethane synthesis with 2-ketoses and subsequent 
Nef reaction which yields 2-C-branched derivatives [6]. 
In the latter preliminary study it was shown that 
a treatment of two branched-chain aldoses, namely 
2-C-(hydroxymethyl)-D-mannose and -D-glucose, re­
spectively, with diluted molybdic acid at elevated 
temperature produces corresponding hept-2-uloses, D-
gluco- and D-manno-hept-2-ulose. A stereospecific re­
arrangement of these 2-C-branched aldoses is a prob­
able mechanism of this reaction and is apparently 

analogical to that occurring with unbranched al­
doses [7]. Here we present a more detailed study 
of the molybdic acid-catalyzed isomerization of 2-
C-hydroxymethyl branched-chain aldoses to the cor­
responding 2-ketoses using two model sugars, 2-
C-(hydroxymethyl)-D-mannose and 2-C-(hydroxyme-
thyl)-D-glucose. 

E X P E R I M E N T A L 

300 MHz XH NMR and 75.46 MHz 1 3 C NMR spec­
tra were recorded at 40°С in D 2 0 on a Bruker DPX 
300 spectrometer. The values of chemical shifts were 
expressed relative to external TSP. Two-dimensional 
COSY and HSQC experiments were performed us­
ing z-gradients for coherence transfer. HSQC spec­
tra were collected in phase sensitivity-enhanced pure-
absorption mode. Both XH and 1 3 C NMR resonances 
were assigned from iVo-dimensional experiments and 
^-decoupled 1 3 C NMR spectra. Optical rotations 
were obtained on a Perkin—Elmer 141 Polarime­
ter at 20 °C. Melting points were measured on a 
Kofler stage. Deionizations were carried out with ion-
exchange resins Amberlite IRA-402 in the HCO^" form 
and Dowex 50W X-4, in the H + form. Solutions were 
concentrated under reduced pressure at temperatures 
below 40 °C. 

The composition of reaction mixtures and the pu­
rity of isolated saccharides were examined also by 
chromatography on Whatman No. 1 paper, using the 
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elution with solvent system Si butanol—ethanol— 
water (volume ratio = 5 1 4 ) for 18—20 h followed 
by visualization with alkaline silver nitrate. 

N i t r o m e t h a n e Synthesis and t h e Nef React ion 
with D-Fructose 

D-Fructose (25 g) was dissolved in methanol (110 
cm3) and nitromethane (56 cm3) and under occasional 
agitation, a cold solution of sodium methoxide (6.25 
g of sodium in 175 cm3 of methanol) was added in 
portions. Reaction mixture became turbid. After ad­
dition of butanol (500 cm3) a voluminous precipitate 
occurred at once. The precipitate was filtered with 
suction and immediately added into vigorously stirred 
4.5 M-H 2S0 4 (500 cm3) at 25°C and the reaction mix­
ture was allowed to stand for 1 h. The acidic solution 
was neutralized with an excess of barium carbonate 
(695 g) by stirring the suspension for 2 h. The neutral 
mixture was filtered with suction. Clear filtrate was 
concetrated under reduced pressure to a sirup which 
was dissolved in tap water (2 dm3) and baker's yeast 
was added. D-Fructose was removed by a week fer­
mentation. The fermented solution was filtered, con­
centrated (to 200 cm3), then methanol (200 cm3) was 
added and the mixture was treated with charcoal (1 g) 
and filtered. Afterwards it was deionized with cation 
(H + form) and anion (HCO^ form) exchange resins 
and evaporated. The obtained yellow sirup (3.46 g, 
18.2 %) contained branched-chain saccharides, namely 
2-C-(hydroxymethyl)-D-mannose and -D-glucose. 

2- C-(Hydroxymethyl)-D-mannose (IV) 

a) The mixture of 2-C-(hydroxymethyl)-D-manno-
se and 2-C-(hydroxymethyl)-D-glucose (1 g; 4.76 
mmol) dissolved in water (8 cm3) was stirred with 
a solution of Phenylhydrazine (0.5 cm3, 4.76 mmol) 
in ethanol (2 cm3) for 2 h at room temperature and 
then it was placed in a refrigerator for 24 h. After fil­
tration of crystals these were washed with cold water 
( 2 x 5 cm3), and dried in desiccator in the presence 
of phosphorus pentoxide to give 2-C-(hydroxymethyl)-
D-mannose phenylhydrazone (0.45 g, 77 %), m.p. = 
184—185^. 

A mixture of 2-C-(hydroxymethyl)-D-mannose phe­
nylhydrazone (0.4 g), water (1.8 cm3), methanol (0.15 
cm3), benzaldehyde (0.1 cm3), and pyridine (0.5 cm3) 
was heated at 1 0 0 ^ for 3 h with stirring. The reaction 
mixture was filtered, washed with water (2 cm3). The 
filtrate was extracted with ethyl acetate ( 3 x 5 cm3), 
purified with charcoal and evaporated in vacuo to a 
sirupy IV Yield = 0.25 g (89 %), [a](D, 20°C, p = 20 
g d m " 3 , water) = + 11.0°, RFru = 0.75 (Si). XH NMR 
spectrum (D 2 0), 6: 5.08 (s, H-la), 4.87 (s, H-l/3), 3.90 
(dd, H-6aa), 3.84 (m, H-5a), 3.81 (dd, H-6ba), 3.76 (s, 
H-2'a,b/3), 3.75 (s, H-2'a,ba), 3.71 (dd, Н-ба/3), 3.70 
(d, H-3a), 3.68 (d, H-3/3), 3.64 (m, H-4a,/J), 3.59 (dd, 

H-6b/?), 3.39 (m, H-5/3). 1 3 C NMR spectrum (D 2 0), 
ô: 97.0 (C-la), 96.9 (C-l/3), 78.7 (C-5/3), 78.4 (C-2a), 
78.1 (C-2/3), 74.9 (C-3/3), 74.8 (C-5a), 74.2 (C-3a), 
70.5 (C-4a), 70.5 (C-4/3), 66.3 (C-2'a), 63.9 (C-6a), 
63.9 (C-2'/3), 63.3 (C-6/3). 

6) A mixture of 2-C-(hydroxymethyl)-2,3:5,6-di-0-
isopropylidene-D-mannofuranose [5] (0.28 g), water (8 
cm3), and Dowex 50 W X-4 in H + form (1 cm3) was 
stirred at 70°C for 5 h. The resin was then filtered off, 
washed with water ( 3 x 5 cm3), and the filtrates were 
purified with charcoal and evaporated to dryness to 
give sirupy 2-C-(hydroxymethyl)-D-mannose (0.19 g, 
93 %). 

2-C-(Hydroxymethyl)-D-glucose (V) 

The mother liquor obtained after removal of 2-
C-(hydroxymethyl)-D-mannose phenylhydrazone was 
evaporated in vacuo to sirup. A mixture of the sirupy 
residue (0.87 g), water (3.5 cm3), methanol (0.3 cm3), 
benzaldehyde (0.2 cm3), and pyridine (0.1 cm3) was 
heated at 100 °C for 3 h with stirping. The reaction 
mixture was filtered, washed with water (3 cm3). The 
filtrate was extracted with ethyl acetate (3 x 10 cm3), 
purified with charcoal and evaporated in vacuo to a 
sirupy residue (0.55 g, 60 %). Examination by XH 
NMR spectroscopy of the product showed a ca. 85 
% purity of 2-C-(hydroxymethyl)-D-glucose with the 
admixture of 2-C-(hydroxymethyl)-D-mannose. Chro­
matography of the sirupy residue (0.2 g) on a column 
(95 cm x 1.6 cm) of Dowex 50W X-8 (37—75 /im) in 
the Ba2 + form afforded V (0.12 g, 70 %), sirup with 
[a](D, 20°C, p = 27 g dm"3 , water) = + 27.4°, RFru = 
0.65 (Si). lR NMR spectrum (D20), 5: 5.18 (s, H-la), 
4.72 (s, H-l/3), 3.96 (d, Н-2'а/З), 3.89 (d, H-3a), 3.86 
(d, H-2'b/J), 3.84 (m, H-5a), 3.75—3.84 (m, H-2'a,ba, 
H-6a,ba), 3.82 (dd, H-6a/3), 3.69 (dd, Н-бЬ/3), 3.58 
(d, H-3/3), 3.52 (t, H-4a), 3.52 (t, H-4/3), 3.46 (m, H-
5ß). 1 3 C NMR spectrum (D 2 0) , S: 101.1 (C-l/3), 94.8 
(C-la), 80.9 (C-3/3), 79.6 (Č-5/3), 78.00 (C-2a), 77.3 
(C-3a), 76.7 (C-2/3), 74.6' (C-5a), 71.0 (C-4a), 71.0 
(C-4/3), 63.9 (C-6/3), 63.6 (C-6a), 63.6 (C-2'a), 62.8 
(C-2'/3). 

D-^Zwco-Hept-2-ulose (VI) 

2-C-(Hydroxymethyl)-D-mannose (0.4 g) dissolved 
in 0.2 % aqueous solution of molybdic acid (20 cm3) 
was heated at 80 °C for 1.5 h. The cold reaction 
mixture was then stirred with Amberlite IRA-400 in 
HCO^" form (10 cm3), which was filtered off after 15 
min and washed with water (3 x 10 cm 3). The filtrate 
was concentrated to a sirup, which was dissolved in a 
small quantity of water and then methanol was added. 
Seeding of the solution with authentic crystals of D-
^/wco-hept-2-ulose yielded crystalline VI (0.32 g, 80 %) 
which after recrystallization had m.p. = 171—173^, 
[a](D, 23°C, p = 20 g d m " 3 , water) = + 65.5° Ref. 
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Fig . 1. Time dependence of the concentration of 2-C- (hydroxy-
methyl)-D-mannose (IV) (•) and D-p/iíco-hept-2-ulose 
( VI) ( • ) during the conversion to their mutual equilib­
rium in 0.2 % molybdic acid at 80°C. 
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F i g . 2. Time dependence of the concentration of 2-C-(hydroxy-
methyl)-D-glucose (V) (•) and D-manno-hept-2-ulose 
(VII) (T) during the conversion to their mutual equi­
librium in 0.2 % molybdic acid at 80 °C. 

[8] gives m.p. = 171—17442 and [a](D, 20°C, p = 25 
g d m - 3 , water) = + 67.5° 

Kinetic Analysis 

A solution of 100 mg of 2-CL(hydroxymethyl)-D-
mannose, 2-C-(hydroxymethyl)-D-glucose, D-manno-
hept-2-ulose or D-p/wco-hept-2-ulose, respectively, in 5 
cm3 of 0.2 % aqueous molybdic acid was kept at 80 °C. 
The 0.5 cm3 samples of the reaction mixture were 
taken in time intervals, molybdic acid was removed 
with 3 cm3 of Amberlite IRA-400 in the HCO^~ form, 
and ХН NMR spectra were measured to determine the 
mole ratio of IVand VIor Fand VII, respectively, un­
til .the equilibria IV ^ VI and V ^ VII were reached 
(Figs. 1 and 2). The concentrations of the products at 
each time point Q divided by their equilibrium con­
centrations CQO plotted vs. time are given in Figs. 3 
and 4. 

R E S U L T S A N D D I S C U S S I O N 

Nitromethane synthesis with D-fructose followed 
by immediate Nef reaction of intermediate sodium 1-
deoxy-2- C-(hydroxymethyl)hexitol-l-nitronates II 
and III (Scheme 1) afforded a mixture of 2-C-
(hydroxymethyl)-D-mannose (IV) and -D-glucose (V) 
and starting D-fructose. After removal of D-fructose by 
fermentation with baker's yeast, 18 % of the branched-
chain aldoses were obtained in the ratio Xr = 1.4 
1 (determined by XH NMR). Branched-chain saccha­
rides /Fand F were separated as phenylhydrazones. 2-
C-(Hydroxymethyl)-D-mannose phenylhydrazone was 
obtained by reaction of equimolar ratio of the sac­
charides mixture and Phenylhydrazine at room tem­
perature and IV was released from the hydrazone by 

Cf/Co 

ŕ/min 

F i g . 3. Comparison of the rates of molybdic acid-catalyzed 
interconversions of 2-C-(hydroxymethyl)-D-mannose 
(IV) and D-p/wco-hept-2-ulose (V/); conversion IV -> 
VI (•), conversion VI -> IV (•). 

reaction with benzaldehyde. Branched-chain sugar IV 
was prepared also by hydrolysis of its 2,3:5,6-di-0-
isopropylidene derivative [5]. The residue after with­
drawal of IV via its phenylhydrazone contained mainly 
branched-chain aldose Fand about 15 % of IV. Sugar 
V free of IV was obtained by chromatographic purifi­
cation of the residue on a column of Dowex 50W in 
the B a 2 + form. 

The treatment of the 2- C-hydroxymethyl branched-
chain hexoses / F a n d Vwith diluted molybdic acid as 
shown already in the preliminary communication [6] 
caused their rapid transformation to the correspond­
ing hept-2-uloses. This transformation was now stud­
ied in detail under milder reaction conditions. Thus, 
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F i g . 4. Comparison of the rates of molybdic acid-catalyzed in-
terconversions of 2-C-(hydroxymethyl)-D-glucose (V) 
and D-manno-hept-2-ulose (VIJ); conversion V —• VII 
(•), conversion VII -> V (T). 

in 0.2 % aqueous solution of molybdic acid at 80 °C 
2-C!-(hydroxymethyl)-D-mannose reached equilibrium 

within 1 h (Fig. 1) that contained the starting sugar 
and D-<7Zuco-hept-2-ulose (VI) in the ratio x,- = 2 23 
(Fig. 1). The ratio was determined by integration of 
both H-la and H-l/3 protons of IV and H-5 proton 
of VI in the reaction mixture. To confirm that the 
obtained ratio of sugars IV and VI is their thermody­
namic equilibrium the transformation was carried out 
also from the side of heptulose VI. The same equilib­
rium of IV and VI (xr = 2 23) was reached within 
20 min under otherwise identical reaction conditions 
(Fig. 1). The molybdic acid-catalyzed mutual inter-
conversion of another rearranging pair of sugars 2- C-
(hydroxymethyl)-D-glucose (V) and D-manno-hept-2-
ulose (VII) proceeded with slower reaction rate. The 
thermodynamic equilibrium of V and VII yT = 2 
55 determined by the integration of both H-la and 
H-l/J protons of V and H-5 and H-la protons of VII 
was reached in 3 h under the same reaction condi­
tions starting from the side of heptulose VII (Fig. 2). 
From the other side when branched-chain aldose VI 
was used as starting material the equilibrium of the 
reaction was reached within 1 h. 

Unlike the preliminary study using 1 3 C NMR spec­
tral analysis, the present more detailed analysis of 

HO 

CH2OH 

r = 0 

— OH 

— OH 

сн2он 

CH3N02 

CH3ONa 

R1-

HO-

CHN02Na 

R2 

OH 

I—OH 

CH2OH 

H2S04 

// R1 = OH, R2 = CH2OH 

/// R1 = CH,OH, R2 = OH 

R1-

CHO 

-R2 

HO — 

-OH 

1—OH 

CH2OH 

H2Mo04 

R̂ -

HO-

CH2OH 

h = 0 

-R2 

OH 

OH 

CH2OH 

IV R1 = OH, R2 = CH2OH 

V R1 = CH,OH, R2 = OH 

VI R1 = H, R2 = OH 

VII R1 = OH, R2 = H 

Scheme 1 

Chem. Papers 52 (4) 238—243 (1998) 241 



Z. HRICOVÍNIOVÁ, M. HRICOVÍNI, M. PETRUSOVÁ, M. MATULOVA, L PETRUS 

the reaction mixtures including XH NMR spectra and 
2D HS Q С revealed the presence of small quantities 
of branched-chain aldoses IV and V in their reaction 
equilibria with the respective hept-2-uloses VI and 
VII. The obtained data suggest that the conversions of 
/Fand Vto respective VTand VIIare not irreversible 
but their reaction equilibria are strongly shifted to the 
side of hept-2-uloses. These relatively low mole ratios 
of the interconverting branched-chain aldoses to ke-
toses (2 23 and 2 55, respectively) caused the for­
mer simplified interpretation of their 1 3 C NMR spec­
tra and inaccurate conclusions [6]. 

The convenient spectral analysis of the reaction 
mixtures enabled to perform also a kinetic analysis 
of the transformations. Thus the rates of conversions 
of IV, V, VI or VII to equilibria were followed with 
time at identical reaction conditions. For a simple re­
versible reaction A ^ B, the dependences ctj c^ vs. 
time for both forward and reverse reactions should be 
the same. However, the comparison of the dependences 
for the respective pair conversions IV -> VI and VI -> 
IV (Fig. 3) as well as V -> VII and VII -> V (Fig. 4) 
shows significant differences. The differences between 
rearranging pairs can be explained by the formation of 
unreactive complexes of sugars with molybdic acid [7]. 
Thus, e.g. 2-C-(hydroxymethyl)-D-mannose can form 
similar unreactive tridentate or tetradentate molyb-
date complexes as D-mannose [9, 10], which is not 
possible for D-^/ifcco-hept-2-ulose. Therefore in early 
stages of conversion IV -» VI the effective concentra­
tion of catalyst is lower than the total concentration 
so that the rate of conversion is lower. On the con­
trary, conversion IV —> VI from its early stages is not 
catalyst-deficient due to the formation of catalytically 
inactive species so that its reaction rate is high. Simi­
lar differences found between the rates of conversions 
V —> VII and VII —> V could be explained analog­
ically. Due to these difficulties the reaction rates of 
conversions were not further analyzed. 

The mechanism of the Bilik reaction has been reli­
ably proved using 1 3 C and 2 H isotopically substituted 
aldoses [7, 11]. The results of an earlier study using 
only 3 H isotopically labelled aldoses [12] are in accor­
dance with this mechanism. According to the mecha­
nism the carbon skeleton of aldoses rearranges during 

,the reaction in such a way that the carbon atom C-l 
of the starting aldose becomes the carbon atom C-2 
of the product aldose and vice versa, while the other 
carbon atoms C-3, C-4, etc. do not change their posi­
tions in the carbon skeleton. It means that during the 
process the C-2—C-3 bond is broken simultaneously 
with the formation of a new bond C-l—C-3. Thus the 
hydrogen, deuterium, or tritium atom originally linked 
to the carbonyl carbon atom of the respective starting 
D-glucose (X = 1 H, 2 H, or 3 H, respectively; Y = H; 
Scheme 2) becomes bound to the carbon atom C-2 of 
the formed D-mannose and vice versa. On the basis 
of the known mechanism of the Bilik reaction differ-

HO 

1=0 
-V-H H 

o = j 

H2Mo04 HO — 

— OH 

— OH 

CH2OH 

Кон 
OH 

CH2OH 

Scheme 2 

ent isotopically substituted sugars have been prepared 
[13, 14]. 

In this work studied sugars IV—VII can be for­
mally considered as substituted D-glucoses (V: X = 
H, Y = CH2OH; VI: X = CH2OH, Y = H) and D-
mannoses (IV: X = CH2OH, Y = H; VII: X = H, Y 
= CH2OH; Scheme 2). Then the observation of the 
mutual interconversion of sugars IV ^ VI and V ^ 
VII catalyzed by molybdic acid can be regarded as an­
other structural proof of the mechanism of the Bilik 
reaction. On the other hand, thus the Bilik reaction 
can be a convenient preparative tool also for prepara­
tion of 2-ketoses from 2-C-hydroxymethyl branched-
chain aldoses and vice versa. The former case is here 
exemplified by a simple, one-step synthesis of D-gluco-
hept-2-ulose obtained in a 80 % yield from easily avail­
able 2-C-(hydroxymethyl)-D-mannose. A useful exam­
ple of an opposite application, the preparation of D-
hamamelose from D-fructose is shown elsewhere [15]. 
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