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The low-temperature heat capacities of 2-chloro-5-trichloromethylpyridine were measured with
a high-precision automated adiabatic calorimeter in the temperature range from 80 K to 345 K.
A solid-liquid phase transition was observed from 318.57 K to 327.44 K with peak temperature
324.67 K; the molar enthalpy and entropy of phase transition, ∆Hm and ∆Sm, were determined
to be 14.50 ± 0.02 kJ mol−1 and 44.66 ± 0.07 kJ K−1 mol−1, respectively. The thermal stability
was investigated through thermogravimetric analysis (TG). The TG and DTG results reveal that
2-chloro-5-trichloromethylpyridine starts to lose mass at 332 K due to evaporation and completely
changes into vapour at 483 K under the present experimental conditions.

2-Chloro-5-trichloromethylpyridine (C6H3NCl4) is
an important intermediate compound for synthe-
sizing 2-chloro-5-trifluoromethylpyridine, an organic
compound widely used in fine chemical engineering
field, such as pesticide, dye, and medicine indus-
tries [1]. The thermodynamic properties of 2-chloro-
5-trichloromethylpyridine have not been reported till
now. In order to improve the processes of chemical
synthesis and contribute to a better understanding of
the properties of the compound, the thermodynamic
properties of this compound were investigated through
adiabatic calorimetry and thermal analysis techniques
in the present study. The low-temperature heat capac-
ities were measured in the temperature range from
80 K to 345 K. A solid-liquid phase transition was
observed and the entropy and enthalpy increments
of the phase transition, ∆Hm and ∆Sm, were deter-
mined. In addition, the thermal behaviour of evapo-
ration was further investigated by thermogravimetric
analysis.
Traditional methods of synthesis of 2-chloro-5-

trichloromethylpyridine [2, 3] have the disadvantages
of low productivity, low selectivity, and yielding many
by-products. New synthesizing method [4] employed
in the present experiment overcame these draw-
backs.

EXPERIMENTAL

The 2-chloro-5-trichloromethylpyridine sample
used in the present experiment was synthesized by
the method reported in the patent [4]. 2-Chloro-5-
methylpyridine reacted with chlorine at the temper-
ature 120—140◦C with the initiator 2,2′-azobisiso-
butyronitrile. Then the mixture was distilled at 150◦C
under reduced pressure.
The structure of the product was determined by

IR, 1H NMR, and 13C NMR spectra and its purity
was determined to be higher than 99.9 % through gas
chromatographic analysis.
Heat capacity measurements were carried out in a

high-precision automated adiabatic calorimeter in the
temperature range from 80 K to 400 K. The struc-
ture, procedures, and performance of the apparatus
had been described in detail elsewhere [5]. The sam-
ple amount used for the measurement was 2.0405 g,
equivalent to 8.8368 mmol, based on a molar mass of
230.91 g mol−1. The heating duration and tempera-
ture increment for each experimental point were con-
trolled to be about 10 min and 3—4 K, respectively,
in the whole experimental temperature range.
Thermogravimetric measurement was performed

on a Setaram setsys 16/18 apparatus, France. A mass
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of 5.7 mg of sample was placed in a 100 mm3 α-Al2O3
crucible and heated from 18 K to 700 K with a rate
of 10 K min−1 under high purity (99.999 %) nitrogen
atmosphere with a flow rate of 25 cm3 min−1.

RESULTS AND DISCUSSION

The temperature dependence of experimental mo-
lar heat capacities of 2-chloro-5-trichloromethylpyri-
dine is shown in Fig. 1. The dependence was fitted to

the following polynomial in reduced temperature (X)
by means of the least-square fitting.
Over the temperature range of 80—318 K

Cp,m/(J K−1 mol−1) = 149.96+58.850X−16.136X2−
−22.911X3 − 1.0326X4+ 26.923X5 + 13.825X6

where X = (T − 199)/119 and T is the absolute tem-
perature. The correlation coefficient of the fitted curve
R2 = 0.99927 and the average deviation of the fitted

Table 1. Calculated Thermodynamic Function Data of 2-Chloro-5-trichloromethylpyridine

T/K Cp,m/(J K−1 mol−1) HT − H298.15 K/(kJ mol−1) ST − S298.15 K/(J K−1 mol−1)

80 83.754 −30.897 −171.27
85 87.010 −30.470 −166.11
90 90.203 −30.027 −161.04
95 93.328 −29.568 −156.08
100 96.384 −29.093 −151.22
105 99.374 −28.604 −146.44
110 102.30 −28.100 −141.75
115 105.17 −27.581 −137.15
120 107.99 −27.048 −132.62
125 110.78 −26.501 −128.16
130 113.52 −25.940 −123.77
135 116.24 −25.366 −119.44
140 118.94 −24.778 −115.17
145 121.63 −24.177 −110.96
150 124.31 −23.562 −106.79
155 126.98 −22.934 −102.68
160 129.65 −22.292 −98.61
165 132.31 −21.637 −94.58
170 134.97 −20.969 −90.59
175 137.61 −20.287 −86.63
180 140.24 −19.593 −82.72
185 142.85 −18.885 −78.84
190 145.43 −18.164 −74.99
195 147.97 −17.431 −71.17
200 150.45 −16.685 −67.39
205 152.88 −15.926 −63.64
210 155.24 −15.156 −59.92
215 157.53 −14.374 −56.24
220 159.72 −13.581 −52.59
225 161.82 −12.777 −48.98
230 163.82 −11.963 −45.40
235 165.72 −11.139 −41.86
240 167.52 −10.306 −38.35
245 169.23 −9.464 −34.88
250 170.85 −8.614 −31.45
255 172.41 −7.755 −28.06
260 173.93 −6.890 −24.70
265 175.44 −6.016 −21.37
270 176.99 −5.135 −18.08
275 178.62 −4.246 −14.82
280 180.40 −3.349 −11.59
285 182.41 −2.442 −8.380
290 184.73 −1.524 −5.187
295 187.48 −0.594 −2.004
298.15 189.48 0.000 0.000
300 190.77 0.352 1.177
305 194.74 1.315 4.367
310 199.56 2.301 7.575
315 205.40 3.312 10.816
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Fig. 1. Experimental molar heat capacity Cp,m of 2-chloro-5-
trichloromethylpyridine as a function of temperature
(T ) (a), with the insertion indicating the solid-liquid
phase transition (b).

values from the experimental ones is within ± 0.2 %.
From Fig. 1 it can be seen that the heat capaci-

ties of the sample vary with increasing temperature
in a smooth and continuous manner from 80 K to
319 K. No phase transition was observed in this tem-
perature range. Therefore, the sample is stable in the
above temperature range. However, thermal anomaly
was observed from 319 K to 327 K. The temperature
at the highest point of the peak, 324.67 K, was deter-
mined to be the melting point. The thermal anomaly
was ascribed to a solid-liquid phase transition. The
heat capacity measurement of the phase transition re-
gion was repeated three times.
The molar enthalpy ∆Hm and entropy ∆Sm of

the phase transition derived by the literature method
[6] are 14.50 ± 0.02 kJ mol−1 and 44.67 ± 0.07
J K−1 mol−1, respectively. These values and the
melting point are lower than those of 2-chloro-
6-trichloromethylpyridine [7], a structurally similar
compound. The result of the comparison is rea-
sonably acceptable considering that the polarity of
the molecule of 2-chloro-6-trichloromethylpyridine is
larger than that of 2-chloro-5-trichloromethylpyridine,
which may indicate the stronger intermolecular in-
teraction of 2-chloro-6-trichloromethylpyridine. Com-
paring pyridine with its derivatives, pyridine with
Tfus = 231.49 K, ∆Hm = 8.28 kJ mol−1, and ∆Sm
= 35.76 J mol−1 K−1 [8], 2-methylpyridine with Tfus
= 206.45 K, ∆Hm = 9.72 kJ mol−1, and ∆Sm = 47.10
J mol−1 K−1 [9], 3-methylpyridine with Tfus = 255.01
K, ∆Hm = 14.18 kJ mol−1, and ∆Sm = 55.61 J mol−1

K−1 [10], and 4-methylpyridine with Tfus = 276.82 K,
∆Hm = 12.58 kJ mol−1, and ∆Sm = 45.45 J mol−1

K−1 [11], it can be seen that the enthalpies and en-
tropies of fusion of these compounds differ largely and
it seems not easy to correlate these parameters with
their structures.

Fig. 2. TG-DTG curves of 2-chloro-5-trichloromethylpyridine.

Through the polynomial of heat capacity tempera-
ture dependence and the relationships of thermody-
namic functions, the thermodynamic function data
were calculated in the temperature range from 80 K to
315 K based on the reference temperature 298.15 K.
The values of thermodynamic functionHT −H298.15K,
ST − S298.15K are listed in Table 1.
The TG and DTG curves of 2-chloro-5-trichloro-

methylpyridine are shown in Fig. 2. It can be seen that
2-chloro-5-trichloromethylpyridine starts to lose mass
at 332 K and reaches the maximal rate of mass loss
at 478 K under the present experimental conditions.
The sample completely loses its mass when the tem-
perature reaches 483 K. The product collected during
the heating up to 490 K proved to be the same sub-
stance as the initial sample judging from its colour
and melting point. So we can deduce that 2-chloro-
5-trichloromethylpyridine begins to vaporize at 332 K
and completely changes into vapour when the temper-
ature reaches 483 K under the present experimental
conditions.
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