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Extrapolation of formation constants to zero ionic strength using “soft” modelling with partial
least-squares, genetic algorithm, and artificial neural networks (ANN) methods was examined and
results of individual approaches were compared. The methods allow a rapid and sufficiently accurate
prediction of thermodynamic formation constants, ion-size parameters, and salting-out coefficients
from experimental equilibrium data, among them the ANN method was found most reliable.

The knowledge of stability constants is important
in all areas of chemistry, chemical technology, environ-
ment, etc., ranging from the need to understand speci-
ation when developing analytical procedures, specia-
tion of metal-ion complexes in the environment [1] for
modelling processes in nuclear waste, biological liq-
uids, etc. However, the measurement of a large num-
ber of stability constants under varying chemical con-
ditions (ionic strength) is not an attractive option.
Therefore accurate and reliable methods for the pre-
diction of stability constants are desirable [2].
There are several options to solve the task. Quite

a general one is to predict the thermodynamic equi-
librium constants from fundamental properties. This
treatment allows the prediction of the equilibrium con-
stant of any metal-ion complex and is extremely useful
in obtaining constants for those complexes which can-
not be studied experimentally [3].
The other possibility is extrapolation of the equi-

librium constants from data estimated at several ionic
strength values to zero. The thermodynamic equilib-
rium constant pKT is then obtained together with
other parameters. There exist several methods relat-
ing equilibrium constants to ionic strength. Usually,
various types of extended Debye—Hückel, Pitzer or
Bromley equations are used. The calculations are per-
formed by the least-squares computer programs [4, 5],
using “hard” models, i.e. using exactly defined equa-
tion with several parameters. A series expansion of
the extended Debye—Hückel equation for prediction
of stability constants was used by Baeza [6]. However,
the functional ionic strength dependence chosen for

the extrapolation of the equilibrium constants is ques-
tionable. The problem of selection of functions for the
extrapolation to zero ionic strength is described in de-
tail by Anderegg [7].
Contrary to the “hard” models described in the lit-

erature [6, 7], the aim of this paper is to examine the
possibility of prediction (extrapolation) of equilibrium
constants to zero ionic strength with the use of “soft”
modelling, like partial least-squares (PLS), genetic al-
gorithm (GA), and artificial neural networks (ANN)
methods. For the sake of simplicity this study will be
limited only to the extended Debye—Hückel equation.
The ANN method has been successfully applied in

differential pulse polarography to evaluate equilibria
for fully inert [8] or labile [9] metal complexes. Re-
cently it was shown that the ANN can be severally
used for the chemical equilibria computation for any
type of data [10].

THEORETICAL

The equations used for the extrapolation of equilib-
rium constants to zero ionic strength are often based
on Debye—Hückel equation [7, 11]. In the case of a
weak acid dissociation

HLz = Lz−1 +H+ (A)

the ionic strength (I ) dependence of − logKa (= pKa)
of a dissociation constant may be expressed by the
extended Debye—Hückel equation

pKa = pKTa −AI1/2(1− 2z)/(1+BαI1/2) +CI (1)

*The author to whom the correspondence should be addressed.
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assuming that the ion-size parameters α for both
ions HLz and Lz−1 are approximately equal, and the
overall salting-out coefficient, C, is defined by C =
CHL − CL. The value of constants A and B is 0.5115
mol−1/2 dm3/2 and 0.3291 m10 mol−1/2 dm3/2, respec-
tively, for aqueous solutions at 25◦C, z is the charge
of HL.
An equation similar to eqn (1) can be written for

equilibrium constant of a complexation reaction

Mm+ + Lz− ⇔ MLm−z (B)

with the stability constant

β =
[ML]
[M][L]

(2)

A more general equation is

log β = log β0 − A′∆z2
√

I

1 +B′α
√

I
− CI (3)

where ∆z2 = (m − z)2 − m2 − (−z)2, A′ and B′ are
the parameters of the solvent (constant for given ex-
perimental conditions, e.g. pressure and temperature),
log β0, α, and C are adjustable parameters related to
the given experimental system.

COMPUTATIONAL METHODS

There are principally two approaches, the use of
“hard” and “soft” modelling. In the so-called “hard”
model eqn (1) and a general least-squares approach
are used, in the “soft” modelling eqn (1) is not used
explicitly.
For example, thermodynamic dissociation con-

stants at I = 0 may be estimated from the data of a
series of pKa values at several different ionic strengths
by a nonlinear least-squares analysis. This is the most
commonly used approach belonging to the “hard”
model. An example of this approach is DHLET pro-
gram [4, 5], where Debye—Hückel equation is applied.
On the other hand, LIANA program used by Foti et
al. [12] applies the Pitzer and Bromley equations.
The independent variable is I and the dependent

variable is measured pKa. The parameters which are
estimated by the general least-squares approach are
pKTa , α, and C. The minimization function is

U =
N∑

i=1

wi(pKa,calc,i − pKa,exp,i)2 (4)

where wi is the weighting factor, pKa,calc,i are the val-
ues calculated according to eqn (1) and pKa,exp,i are
experimental values. The summation is defined for all
N experimental points.
Principles of the “soft” modelling approaches are

briefly given in the following paragraphs.

PLS is the name for a class of methods used for
relating the blocks of variables measured on sets of
objects. PLS is a multivariate regression method that
provides an overview of large data sets. Modelling with
PLS has a large potential as a method of data analysis
in many areas of science.
PLS is used to compress the predictor data matrix

X = [x1, x2, . . . , xp], that contains the values of p pre-
dictors for n samples, into a set of D latent variables
or factor scores T = [t1, t2, . . . , tD], where D ≤ p.
The factors td, d = 1, 2, . . ., D, are determined se-
quentially using the nonlinear iterative partial least-
squares (NIPALS) algorithm. The orthogonal factor
scores are used to fit a set of n observations to m de-
pendent variables Y = [y1, y2, . . . , ym] [13].
Data in this work were processed on a Pentium IV

PC computer. PLS method was executed using the
PLS2 algorithm as implemented in the software pack-
age Unscrambler [14].
Principles of biological evolution and selection were

founded by Charles Darwin and the history of this
discovery is described in [15]. GA is a search algorithm
based in someway on the rules of biological evolution.
Several centuries afterwards a computer algorithm has
been developed, the principles of which are described
in papers [16—18].
The search for optimal parameters is initialized

with a random population of possible solutions. Each
member of the population representing a candidate
solution is tested against some criteria and the mem-
bers of the population are ranked according to their
“fitness”. Competition is the basis of the natural se-
lection: nonaccommodated members are rejected, and
accommodated members are reproduced, creating off-
springs that take the place of rejected members. Re-
production is the mix of the characteristics of the
pairs of good members to produce new members that
possess some characteristics of one parent, and other
characteristics of the other parent. The second way
of changing the population is called mutation. Muta-
tion randomly chooses a member of the population
and randomly changes some of its characteristics. Fit
solutions are allowed to live and breed while unfit so-
lutions die. An iteration is performed until either the
populations or quality of the solutions converge [16].
In GA, the optimized variables (x1, x2, x3, . . ., xn)

are represented as the genes of a chromosome. A col-
lection of values of the variables to be optimized is
called a chromosome, and the variables themselves are
called genes [17]. The fitness of the chromosome is de-
termined by computing the response function score
(fitness = f (x )).
GA algorithm consists of four basic steps.
i) The initial population of chromosomes is cre-

ated either randomly or by random perturbation of
an input chromosome. The population size Np, a user-
controlled option, remains constant throughout the
optimization.
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ii) The fitness of each chromosome in the popula-
tion is computed.
iii) The third step is the exploitation, or the natural

selection step. The chromosomes with the largest fit-
ness scores are placed one or more times into a mating
subset in a semirandom fashion. Chromosomes not se-
lected for the mating subset are removed from the pop-
ulation. The chromosome with the better fitness score
is placed in the mating subset, and both chromosomes
are returned to the gene pool. This process continues
until the mating subset is full. This method gives the
chromosomes with higher fitness scores a higher prob-
ability of being included in the mating subset than the
chromosomes with lower fitness scores.
iv) The fourth step, exploration, consists of apply-

ing the recombination and mutation operators. Two
chromosomes (parents) from the mating subset are
randomly selected to be mated. If the parents are
allowed to mate, a recombination operator is used
to exchange genes between the two parents to pro-
duce two children. If they are not allowed to mate,
the parents are placed into the next generation un-
changed.
Following recombination, a mutation operator is

used to increase the diversity in the population.
After the exploration step, the population consists

of the newly created chromosomes, and the steps two
through four are repeated. This process continues for
a user-selected number of generations or until a cer-
tain termination criterion is reached (e.g. most chro-
mosomes in the population are the same) [18].
Data in this work were processed using GA as im-

plemented in the Pascal program written by Kvas-
nička, Department of Mathematics, Slovak University
of Technology, Bratislava, Slovakia.
ANN are mathematical systems that simulate bio-

logical neural networks. The description of ANN can
be found in several monographs [19—21] and in pa-
pers [8—10] and thus only a brief description will be
given here.
The fundamental processing element of an ANN is

the node (an analogue of a neuron in biological sys-
tems). The nodes are arranged in layers that make up
the global network architecture. The networks com-
prise three or more node layers:
1. a layer of input units,
2. one or more hidden layers,
3. a layer of output units.
The nodes are connected and the weights are as-

signed to each connection. The values of the weights
are modified in the course of the network operation.
Each unit has an activity level that is determined by
an input signal received from the other units in the
network. Neural networks are trained by repeatedly
presenting examples.
There are many different neural network architec-

tures, but one of the most common is the feedforward
neural network. During the learning stage of these

nets, the outputs come to approximate the target val-
ues given by the inputs in the training set. In the sec-
ond stage, the results of training are to be proved on
a test set.
The data in this work (first cases) were processed

using Back Propagation Neural Networks (BPNN),
applying the generalized delta rule, as included in the
Parallel Distributed Processing (PDP) software pack-
age [20], while the data in the last case were processed
using Trajan 3.0 software package [22].

RESULTS AND DISCUSSION

We will examine several examples concerning pre-
diction of equilibria constants to zero ionic strength
from experimental values obtained for a series of dif-
ferent ionic strengths with the use of PLS, GA, and
ANN methods.
Initially we dealt with prediction of the thermody-

namic dissociation constant of a weak acid. In this case
we have first applied simulated data, with no experi-
mental noise superimposed. Using extended Debye—
Hückel eqn (1) twelve values of a weak acid disso-
ciation constant, with pKTa = 6.5, α/m−10 = 8.0,
C/(mol−1 dm3) = 0.053 and for I/(mol dm−3) = 0.01,
0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 0.6, 1, 2, 3, and 5 were
calculated. Then the thermodynamic equilibrium con-
stant was estimated from these data (12 points) with
the use of PLS, GA, and ANN methods.
However, in order to perform PLS or ANN pre-

diction, one needs a calibration set. Therefore for the
estimation of the values pKTa , α, and C by the PLS
and ANN methods using eqn (1) for the same ionic
strength values, the calibration set represented by 64
curves was computed for pKTa = 6.40, 6.45, 6.50,
and 6.55, α/m−10 = 7.4, 7.8, 8.2, and 8.6, C/(mol−1

dm3) = 0.045, 0.050, 0.055, and 0.060 (Fig. 1). These
64 curves represent a calibration set where, for each
curve, twelve pKa values are given in input and pKTa ,
α, and C values representing output data were used.
A PLS model with 12 latent variables was applied.
Similarly, these 64 curves were used as a training

set for ANN. A feedforward network was constructed
by using three-layer ANN architecture and a system-
atic study was made for the different neural parame-
ters. Output values were scaled so as to be between
0 and 1 (the range of the sigmoidal transfer function
outputs), and the normalized outputs values were used
for the output nodes. The number of hidden nodes is
an adjustable parameter and its optimal value was
searched. Together with the number of nodes in the
hidden layer another adjustable parameter was learn-
ing rate (lrate). The ANN structure with 12 input,
3 hidden, and 3 output artificial neurons (Fig. 2) ap-
proximated the data quite well and thus this structure
was used for the prediction.
The obtained thermodynamic dissociation con-

stants, ion-size parameters, and salting-out coeffi-
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Fig. 1. Dependence of the pKa values (�) of the weak acid on
ionic strength (pKTa = 6.5, α/m−10 = 8.0, C/(mol−1
dm3) = 0.053, I/(mol dm−3) = 0.01, 0.02, 0.04, 0.06,
0.1, 0.2, 0.4, 0.6, 1, 2, 3, 5) and simulated curves (pKTa
= 6.40, 6.45, 6.50, and 6.55, α/m−10 = 7.4, 7.8, 8.2,
and 8.6, C/(mol−1 dm3) = 0.045, 0.050, 0.055, and
0.060) for the estimation of thermodynamic equilibria
constants.

input layer 

hidden layer 

output layer 

Fig. 2. An example of the ANN architecture (12:3:3) used in
some cases of this work.

cients as obtained using different approaches are given
in Table 1. The results are quite satisfactory, the low-
est deviation from the correct values of parameters is
observed for the ANN method.
Two levels of noise in the pKa values were exam-

ined. To 12 values of dissociation constants calculated
in the previous case the noise with normal distribution
and with the mean value 0 and the standard deviation

0.01 (0.02) was superimposed. Then we continued as
in the foregoing case.
The thermodynamic dissociation constants, ion-

size parameters, and salting-out coefficients estimated
by GA are given in Table 1. For PLS we used the
same calibration set and model as in the previous case,
and for the ANN method the same training set and
ANN architecture were employed as in the case with-
out noise. Predicted values and comparison of all three
methods are given in Table 1. The results reported in
Table 1 show also in this case quite satisfactory agree-
ment with the correct pKTa , α, and C values.
Dissociation constants of bromthymol blue were

determined [4] for the different ionic strength values.
From these experimental data the thermodynamic
equilibrium constants and Debye—Hückel equation
parameters were determined with the use of the GA,
PLS, and ANN methods.
First the use of GA was examined. For the es-

timation of the pKTa , α, and C values by PLS and
ANN methods 64 curves were simulated using the ex-
tended Debye—Hückel equation for the same ionic
strength values, where pKTa = 7.10, 7.15, 7.20, and
7.25, α/m−10 = 7.0, 7.5, 8.0, and 8.5, C/(mol−1 dm3)
= 0.050, 0.055, 0.060, and 0.065 (Fig. 3).
For PLS these 64 curves were used as a calibration

set, for every curve 13 pKa values as input and pKTa ,
α, and C values as output data. A PLS model with 13
latent variables was applied. In the prediction phase
we took as the input data 13 values of dissociation
constants from literature and the pKTa , α, andC values
were predicted as the output data.
For the ANN method these 64 curves were used as

a training set, for every curve 13 pKa values as input
and pKTa , α, and C values as output data. A feed-
forward network was constructed using a three-layer
ANN architecture. The output values were scaled to
be between 0 and 1, and the normalized output values
were used for the output nodes. The ANN structure
with 13 input, 4 hidden, and 3 output artificial neu-
rons approximated the data quite well, therefore this
structure was then used for the prediction. In the pre-
diction phase, we took as the input data 13 values of
dissociation constants from [4] and the output data –

Table 1. Comparison of Results of Different Prediction Approaches for the Determination of Debye—Hückel Equation Parameters
of the Weak Acid

Method
Correct

Parameter value PLS GA ANN
Noise s Noise s Noise s

0 0.01 0.02 0 0.01 0.02 0 0.01 0.02

pKTa 6.500 6.500 6.498 6.496 6.450 6.498 6.496 6.502 6.499 6.496
α/m−10 8.000 8.031 8.310 8.608 8.009 8.297 8.619 8.025 8.339 8.607

C/(mol−1 dm3) 0.053 0.053 0.053 0.052 0.053 0.053 0.052 0.053 0.053 0.052
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Table 2. Comparison of Results of Different Prediction Approaches for the Determination of Debye—Hückel Equation Parameters
for the Bromthymol Blue

Method
Parameter

DHLET PLS GA ANN

pKTa 7.199 ± 0.004 7.199 7.199 7.195
α/m−10 7.763 ± 0.209 7.783 7.753 7.790

C/(mol−1 dm3) 0.054 ± 0.003 0.055 0.055 0.054

Table 3. Comparison of Results of Different Prediction Approaches for the Determination of Debye—Hückel Equation Parameters
for the Bromcresol Purple

Method
Parameter

DHLET PLS GA ANN

pKTa 6.197 ± 0.006 6.197 6.197 6.197
α/m−10 8.807 ± 0.328 8.830 8.812 8.828

C/(mol−1 dm3) 0.055 ± 0.004 0.055 0.055 0.055
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Fig. 3. Dependence of the pKa values (�) of bromthymol blue
on ionic strength and simulated curves (pKTa = 7.10,
7.15, 7.20, and 7.25, α/m−10 = 7.0, 7.5, 8.0, and 8.5,
C/(mol−1 dm3) = 0.050, 0.055, 0.060, and 0.065) for
the estimation of thermodynamic equilibria constants.

pKTa , α, and C values – were then predicted. Thermo-
dynamic dissociation constants, ion-size parameters,
and salting-out coefficients estimated using GA, PLS,
ANN, and general least-squares program are given in
Table 2. All obtained results are acceptable.
Further 12 values of dissociation constants of

bromcresol purple [4] were used as input data. The
thermodynamic dissociation constant, ion-size param-
eter, and salting-out coefficient were determined by
the GA, PLS, and ANN methods.
For the estimation of the values pKTa , α, and C

by the PLS and ANN methods we used eqn (1) and
simulated 64 curves with pKTa = 6.10, 6.15, 6.20, and
6.25, α/m−10 = 8.0, 8.5, 9.0, and 9.5, C/(mol−1 dm3)
= 0.050, 0.055, 0.060, and 0.065 (Fig. 4).
64 curves represent a calibration set, while for each

curve twelve pKa values are given as the input and
pKTa , α, and C values as the output data are used. A
PLS model with 12 latent variables was applied. In the
prediction phase we took as the input data 12 values
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Fig. 4. Dependence of the pKa values (�) of bromcresol purple
on ionic strength and simulated curves (pKTa = 6.10,
6.15, 6.20, and 6.25, α/m−10 = 8.0, 8.5, 9.0, and 9.5,
C/(mol−1 m3) = 0.050, 0.055, 0.060, and 0.065) for the
estimation of thermodynamic equilibria constants.

of dissociation constants from the literature [4].
For the ANN method these 64 curves were used as

a training set, for every curve 12 pKa values as input
and pKTa , α, and C values as the output data. A feed-
forward network was constructed using the three-layer
ANN architecture. Output values were scaled to be be-
tween 0 and 1, and the normalized output values were
used for the output nodes. The ANN structure with
12 input, 3 hidden, and 3 output artificial neurons
(Fig. 2) approximated data very well and was used
for prediction. In the prediction phase the values of
dissociation constants from [4] were used as the input
data. The predicted pKTa , α, and C values as obtained
with GA, PLS, and ANN are given in Table 3 and the
comparison with the results of the “hard” model using
DHLET program [4] shows a good agreement.
In the next stage using the extended Debye—

Hückel equation 12 values of dissociation constants
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Table 4. Comparison of Results of Different Prediction Approaches for the Determination of Debye—Hückel Equation Parameters
of Pd(II) under the Formation of [Pd(OH)+] Complex

Method
Parameter Correct

value PLS GA ANN

pKTa 0.997 0.997 0.100 1.019
α/m−10 3.530 3.267 3.267 3.500

C/(mol−1 dm3) 0.283 0.275 0.276 0.275
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Fig. 5. Dependence of the pKa values (�) of the [Pd(OH)+]
complex on ionic strength (pKTa = 0.997, α/m−10 =
3.53, C/(mol−1 dm3) = 0.283, I/(mol dm−3) = 0, 0.01,
0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 0.6, 1, 2, 4) and simulated
curves (pKTa = 0.6, 0.8, 1.0, and 1.2, α/m

−10 = 3.0, 3.5,
4.0, and 4.5, C/(mol−1 dm3) = 0.275, 0.280, 0.285, and
0.290) for the estimation of thermodynamic equilibria
constants.

of [Pd(OH)+] complex with pKTa = 0.997, α/m−10

= 3.53, C/(mol−1 dm3) = 0.283 were calculated for
ionic strength in the range 0—4. The values of pa-
rameters were estimated with respect to the values
from [23] and the normally distributed noise with the
mean value of 0 and the standard deviation of 0.02 was
superimposed. Thermodynamic equilibrium constant
as well as α and C parameters were then determined
using the GA, PLS, and ANN methods.
For the estimation of the values pKTa , α, and C by

the PLS and ANN methods 64 curves were simulated
using eqn (1), where pKTa = 0.6, 0.8, 1.0, and 1.2,
α/m−10 = 3.0, 3.5, 4.0, and 4.5, C/(mol−1 dm3) =
0.275, 0.280, 0.285, and 0.290 (Fig. 5).
For PLS these 64 curves serve as a calibration set,

for every curve 12 pKa values as the input and pKTa ,
α, and C values as the output data were used. A PLS
model with 12 latent variables was applied. In the pre-
diction phase we took 12 calculated values of dissoci-
ation constants as the input data.
For the ANN method these 64 curves serve as a

training set, for every curve 12 pKa values as input
and pKTa , α, and C values as output data were used. A
feedforward network was constructed by using a three-
layer ANN architecture. The output values were scaled

to be between 0 and 1 and were used for the output
nodes. The ANN structure with 12 input, 3 hidden,
and 3 output artificial neurons (Fig. 2) approximated
data very well and was used for prediction. In the pre-
diction phase we took 12 calculated values of disso-
ciation constants as the input data. Estimated ther-
modynamic dissociation constant, ion-size parameter,
and salting-out coefficient obtained by different meth-
ods are given in Table 4. The results of all methods are
satisfactory, the best agreement between experimen-
tal and predicted values was obtained by the ANN
method.
Dissociation constants of water in lithium chloride

were determined for the LiCl concentrations in the
range 0.1—3 mol dm−3 [6].
The calibration set was again prepared in a simi-

lar way as in the previous cases using the extended
Debye—Hückel equation. 64 curves were computed
for pKTa = 14.06, 14.07, 14.08, and 14.09, α/m−10

= 5.360, 5.365, 5.370, and 5.375, C/(mol−1 dm3) =
0.080, 0.081, 0.082, and 0.083.
These 64 curves were used as the training set; for

each curve 10 pKw values were used as the input,
pKTa , α, and C values were defined as the output data.
From these data (10 values) thermodynamic dissocia-
tion constant of water and other parameters were de-
termined with the use of GA and ANN method as well
as the DHLET program. For the ANN a feedforward
network was applied. The number of hidden nodes was
searched automatically by the automatic network de-
signer. Trajan’s automatic network designer [22] de-
termined a suitable architecture using a combination
of heuristics and sophisticated optimization strategies
and the obtained ANN structure (with 10 input, 4
hidden, and 3 output artificial neurons) approximated
data quite well so that the results of the training were
then used for the prediction. In the prediction phase,
10 pKw values from [6] were used at the input and the
values pKTa , α, and C were predicted (Table 5). Fig. 6
shows a curve obtained using these values. The results
obtained by the DHLET program are also given for
comparison in Table 5 and are in a good agreement.

CONCLUSION

Prediction of thermodynamic equilibrium con-
stants for I → 0 and Debye—Hückel parameters us-
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Table 5. Comparison of Results of Different Prediction Approaches for the Determination of Debye—Hückel Equation Parameters
of Water in Lithium Chloride Aqueous Solution

Method
Parameter

PLS GA ANN

pKTa 14.076 ± 0.015 14.079 14.076
α/m−10 5.369 ± 0.032 5.268 5.368

C/(mol−1 dm3) 0.081 ± 0.010 0.084 0.081
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Fig. 6. Plot of the pKw values in lithium chloride and a com-
parison with the ANN model (solid line) with pKTa =
14.076, α/m−10 = 5.368, and C/(mol−1 dm3) = 0.081;
experimental values.

ing the “soft” modelling with PLS, GA, and ANN
yields the results which are in a good agreement with
the “hard” models where the explicit equation and
the general least-squares approach were applied. The
“soft” modelling methods allow to predict the thermo-
dynamic dissociation constants, ion-size parameters,
and salting-out coefficients either from a series of ex-
perimental or the simulated data sets rapidly and with
the sufficient accuracy.
The advantage of all “soft” modelling methods is

that the explicit model is not needed and after appro-
priate learning the calculations are almost instanta-
neous.
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